Duty Cycle Of Square Wave

Posted on by
Sine, square, triangle, and sawtooth waveforms
5 seconds of square wave at 220 Hz
Problems playing this file? See media help.

A square wave is a non-sinusoidal periodic waveform in which the amplitude alternates at a steady frequency between fixed minimum and maximum values, with the same duration at minimum and maximum. In an ideal square wave, the transitions between minimum and maximum are instantaneous.

The square wave is a special case of a pulse wave which allows arbitrary durations at minimum and maximum. The ratio of the high period to the total period of a pulse wave is called the duty cycle. A true square wave has a 50% duty cycle (equal high and low periods).

Square waves are often encountered in electronics and signal processing, particularly digital electronics and digital signal processing. Its stochastic counterpart is a two-state trajectory.


Square from IC has 0,65V amptlitude and 50% duty cycle. I would like in simple way change duty cycle this square signal from 0-100%. Using potentiometer or uC. I have only one ideas, generate PWM from uC, but AD9833 is easier to control frequency. Edit I designed this layout I want use 3 potentiometer to set duty cycle, ampltiude, and signal offset. If you hit the middle button, you will see a square wave with a duty cycle of 0.5 (i.e., it is high 50% of the time). The period of the square wave is T=2π;. The graph on the right shown the values of c n vs n as red circles vs n (the lower of the two horizontal axes; ignore the top axis for now). A duty cycle is the percentage of the waveform that occurs above the zero axis. The duty cycle of a square wave is always 50%, or 1/2. Because the duty cycle is 1/2, every second harmonic is not present. Example 14-1: The building of a square wave, a common waveform. For a square wave shaped waveform, the duty cycle is given as 50%, therefore the period of the waveform must be equal to: 10ms + 10ms or 20ms So to summarise a little about Square Waves. A Square Wave Waveform is symmetrical in shape and has a positive pulse width equal to its negative pulse width resulting in a 50% duty cycle.

Origin and uses[edit]

Hi, I have a 100Hz 1V (peak-to-peak) square wave on a function generator, I have my true RMS multimeter plugged into it and I meausure around 0.5 VRMS. Now I change it’s duty-cycle to 10% and I measure around 0.3 VRMS. Does this make sense? My question is, if my multimeter.

Square waves are universally encountered in digital switching circuits and are naturally generated by binary (two-level) logic devices. Square waves are typically generated by metal–oxide–semiconductor field-effect transistor (MOSFET) devices due to their rapid on–off electronic switching behavior, in contrast to BJTtransistors which slowly generate signals more closely resembling sine waves rather than square waves.[1]

Square waves are used as timing references or 'clock signals', because their fast transitions are suitable for triggering synchronous logic circuits at precisely determined intervals. However, as the frequency-domain graph shows, square waves contain a wide range of harmonics; these can generate electromagnetic radiation or pulses of current that interfere with other nearby circuits, causing noise or errors. To avoid this problem in very sensitive circuits such as precision analog-to-digital converters, sine waves are used instead of square waves as timing references.

In musical terms, they are often described as sounding hollow, and are therefore used as the basis for wind instrument sounds created using subtractive synthesis. Additionally, the distortion effect used on electric guitars clips the outermost regions of the waveform, causing it to increasingly resemble a square wave as more distortion is applied.

Simple two-level Rademacher functions are square waves.


The square wave in mathematics has many definitions, which are equivalent except at the discontinuities:

It can be defined as simply the sign function of a sinusoid:

x(t)=sgn(sin2πtT)=sgn(sin2πft)v(t)=sgn(cos2πtT)=sgn(cos2πft),{displaystyle {begin{aligned}x(t)&=operatorname {sgn} left(sin {frac {2pi t}{T}}right)=operatorname {sgn}(sin 2pi ft)v(t)&=operatorname {sgn} left(cos {frac {2pi t}{T}}right)=operatorname {sgn}(cos 2pi ft),end{aligned}}}

which will be 1 when the sinusoid is positive, −1 when the sinusoid is negative, and 0 at the discontinuities. Here, T is the period of the square wave and f is its frequency, which are related by the equation f = 1/T.

A square wave can also be defined with respect to the Heaviside step functionu(t) or the rectangular function Π(t):

x(t)=2[n=Π(2(tnT)T12)]1=2n=[u(tTn)u(tTn12)]1.{displaystyle {begin{aligned}x(t)&=2left[sum _{n=-infty }^{infty }Pi left({frac {2(t-nT)}{T}}-{frac {1}{2}}right)right]-1&=2sum _{n=-infty }^{infty }left[uleft({frac {t}{T}}-nright)-uleft({frac {t}{T}}-n-{frac {1}{2}}right)right]-1.end{aligned}}}

A square wave can also be generated using the floor function directly:

x(t)=2(2ft2ft)+1{displaystyle x(t)=2left(2lfloor ftrfloor -lfloor 2ftrfloor right)+1}

and indirectly:

x(t)=(1)2ft.{displaystyle x(t)=left(-1right)^{lfloor 2ftrfloor }.}

Fourier analysis [edit]

The six arrows represent the first six terms of the Fourier series of a square wave. The two circles at the bottom represent the exact square wave (blue) and its Fourier-series approximation (purple).
(Odd) harmonics of a 1000 Hz square wave
Graph showing the first 3 terms of the Fourier series of a square wave

Using Fourier expansion with cycle frequency f over time t, an ideal square wave with an amplitude of 1 can be represented as an infinite sum of sinusoidal waves:

x(t)=4πk=1sin(2π(2k1)ft)2k1=4π(sin(ωt)+13sin(3ωt)+15sin(5ωt)+),where ω=2πf.{displaystyle {begin{aligned}x(t)&={frac {4}{pi }}sum _{k=1}^{infty }{frac {sin left(2pi (2k-1)ftright)}{2k-1}}&={frac {4}{pi }}left(sin(omega t)+{frac {1}{3}}sin(3omega t)+{frac {1}{5}}sin(5omega t)+ldots right),&{text{where }}omega =2pi f.end{aligned}}}
220 Hz square wave created by harmonics added every second over sine wave
Problems playing this file? See media help.

The ideal square wave contains only components of odd-integer harmonic frequencies (of the form 2π(2k − 1)f). Sawtooth waves and real-world signals contain all integer harmonics.

A curiosity of the convergence of the Fourier series representation of the square wave is the Gibbs phenomenon. Ringing artifacts in non-ideal square waves can be shown to be related to this phenomenon. The Gibbs phenomenon can be prevented by the use of σ-approximation, which uses the Lanczos sigma factors to help the sequence converge more smoothly.

An ideal mathematical square wave changes between the high and the low state instantaneously, and without under- or over-shooting. This is impossible to achieve in physical systems, as it would require infinite bandwidth.

Animation of the additive synthesis of a square wave with an increasing number of harmonics

Square waves in physical systems have only finite bandwidth and often exhibit ringing effects similar to those of the Gibbs phenomenon or ripple effects similar to those of the σ-approximation.

For a reasonable approximation to the square-wave shape, at least the fundamental and third harmonic need to be present, with the fifth harmonic being desirable. Bandulu street couture meaning dictionary. These bandwidth requirements are important in digital electronics, where finite-bandwidth analog approximations to square-wave-like waveforms are used. (The ringing transients are an important electronic consideration here, as they may go beyond the electrical rating limits of a circuit or cause a badly positioned threshold to be crossed multiple times.)

Characteristics of imperfect square waves[edit]

As already mentioned, an ideal square wave has instantaneous transitions between the high and low levels. In practice, this is never achieved because of physical limitations of the system that generates the waveform. The times taken for the signal to rise from the low level to the high level and back again are called the rise time and the fall time respectively.

If the system is overdamped, then the waveform may never actually reach the theoretical high and low levels, and if the system is underdamped, it will oscillate about the high and low levels before settling down. In these cases, the rise and fall times are measured between specified intermediate levels, such as 5% and 95%, or 10% and 90%. The bandwidth of a system is related to the transition times of the waveform; there are formulas allowing one to be determined approximately from the other.

50% duty cycle of square wave

See also[edit]

Duty Cycle Of Square Wave Generator

  • Ronchi ruling, a square-wave stripe target used in imaging.

Duty Cycle Of Square Wave Depends On Mcq


Duty Cycle Square Wave Matlab

  1. ^'Applying MOSFETs to Today's Power-Switching Designs'. Electronic Design. 23 May 2016. Retrieved 10 August 2019.

External links[edit]

  • Square Wave Approximated by Sines Interactive demo of square wave synthesis using sine waves.
  • Flash applets Square wave.
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Square_wave&oldid=989231956'